

P/P-C/P-E polyester

Product Information

Our Polyester (P) chemical anchor has been specially formulated to cure quickly and is suitable for applications in concrete and masonry. Winter Grade Polyester (P-C) anchoring system has extremely quick curing time to offset cold ambient temperatures during winter seasons, whilst Tropical Grade Polyester (P-E) has a slower curing time to offset elevated ambient temperatures. We offer P-E in a 300 ml. / single piston foil pack cartridges and 345 ml side by side cartridges.

Note: Tropical Grade Polyester (P-E) is not included in the scope of the ETA or other certification.

Shelf Life

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+5°C to +25°C) out of direct sunlight. When stored correctly, the product shelf life will be 12 months from the date of manufacture.

Health & Safety

For health and safety information please refer to the relevant Safety Data Sheet.

Base Material	Features	Accessories	Uses/Applications
 Concrete Solid & hollow masonry Hard natural stone Solid rock Voided stone or rock Approvals & Tests ETAG 001 Part 5 Option 7 for threaded bars (M8-M24) in galvanized steel 5.8-8.8 & 10.9 and Stainless Steel A4-70; A4-80 & HCR (1.4529) in C20/25 to C50/60 uncracked concrete A+ classification according 	 Anchors may be placed close to free edges Suitable for dry, wet & flooded holes without loss of performance Reduced drilling diameters i.e. M20 only requires a 22mm hole and M24 requires only a 26mm hole making it an economical injection system Variable embedment depths Available in side by side cartridges 345 ml, and single piston foil pack cartridges 300 ml. Ratio of 10:1 	 Applicators Mixing nozzles Cleaning blow pump Cleaning brushes High flow mixing nozzles Extension tubes Resin stoppers Plastic sleeves 	 Canopies Boilers Bicycle racks Hand rails Masonry supports Signs Safety barriers Balcony fences Racking Machinery Satellite dishes
 to compulsory French VOC emissions regulation Tested according to LEED 2009 EQ c4.1, SCAQMD 	 Available in grey, stone and white resulting colours 		

rule 1168 (2005)

Contents

- 1 Product Information
- 1 -Description
- 1 -Shelf Life
- 1 -Health & Safety
- 1 -Base Material
- 1 -Features
- 1 -Accessories
- 1 -Uses/Applications
- 1 -Approvals & Tests
- 3 -Polyester (P) Working & Loading Times
- 3 -Polyester Winter Grade (P-C) Working & Loading Times
- 3 -Polyester Winter Grade (P-E) Working & Loading Times
- 3 -Physical Properties
- 4 -Chemical Resistance
- 4 -Installation Parameters
- 5 -Solid Substrate Installation Method
- 6 -Hollow Substrate Installation Method
- 7 -Theoretical Number of Fixings Per Cartridge
- 7 -Installation diagram

8 Steel Failure Information - Threaded Bars

- 8 -Characteristic resistance values to tension load
- 8 -Characteristic resistance values to shear load

9 Using P/P-C/P-E with Threaded Bars

- 9 -Combined pullout and concrete cone failure in non-cracked concrete C20/25
- 9 -Tension load calculations for combined concrete cone & pullout failure at various embedment depths

13 Using P/P-C/P-E in Masonry

- 13 -Hollow Bricks: Type RC 40
- 13 -Hollow Bricks: Type B40
- 13 -Solid Bricks and Blocks
- 14 Important Notes

Polyester (P) Working & Loading Times

	n cartr nperat °C	0	T Work minutes	Base Material Temperature °C		Temperature		-	T Load minutes
+5	to	+10	12	+5	to	+10	120		
+10	to	+20	6	+10	to	+20	80		
+20	to	+25	4	+20	to	+25	40		
+25	to	+30	3	+25	to	+30	30		
+30	to	+35	2	+30	to	+35	20		
+35	to	+40	1.5	+35	to	+40	15		
	+40		1.5		+40		10		

Note: T Work is the typical time to gel at the highest temperature in the range.

Polyester Winter Grade (P-C) Working & Loading Times

	n cartri nperati °C		T Work minutes	Base Material Temperature °C		Temperature I Loa	
	Min +5		10	-5	to	+5	180
+5	to	+10	5	+5	to	+10	60
+10	to	+20	3	+10	to	+20	40
+20	to	+25	2.5	+20	to	+25	20
+25	to	+30	2	+25	to	+30	15
	+30		2		+30		10

Note: T Work is the typical time to gel at the highest temperature in the range.

P-C may be used at low temperatures (minimum application of -10°C) if the cartridge/resin temperature is kept above +5°C

Polyester (P-E) Working & Loading Times

	in cartri mperatu °C	0	T Work minutes	Base Material Temperature °C			T Load minutes
mir	nimum +	+10	40	110	to +1	5	6 hours
+10	to	+15	30	+10	10 + 1	5	6 hours
+15	to	+20	20	+15	to	+20	5 hours
+20	to	+25	15	+20	to	+25	180
+25	to	+30	10	+25	to	+30	150
+30	to	+35	8.5	+30	to	+35	90
+35	to	+40	7.5	+35	to	+40	75
+40	to	+45	5	+40	to	+45	60
+45	to	+50	3.5	+45	to	+50	45
	+50		2.5	+	-50		30

Note: T Work is the typical time to gel at the highest temperature in the range. Note: Tropical Grade Polyester (P-E) is not included in the scope of the ETA or other certification.

Physical Properties

Property		Unit	Value	Test Standard
Density		g/cm ³	1.7	ASTM D 1875 @ +20°C
	4 hours		50	BS6319
Compressive Strength	24 hours	N/mm ²	60	ASTM D 695 @ +20°C
	7 days		74	ASTM D 695 @ +20 C
Compressive E-Modulus	7 days	GN/m ²	3.13	ASTM D 695 M @ +20°C
Tensile Strength	24 hours	N/mm ²	11	ASTM D 638 @ +20°C
	7 days	IN/11111-	13	ASTM D 656 @ +20 C
Tensile Strength	24 hours	%	0.09	ASTM D 638 @ +20°C
Elongation at Break	7 days	/0	0.12	ASTNID 036 @ +20 C
Flexural Strength	7 days	N/mm ²	24	ASTM D 790 @ +20°C

Product Data Sheet

Chemical Resistance

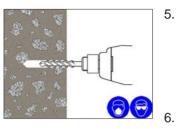
The P chemical mortar has undergone extensive chemical resistance testing. The results are summarised in the table below.

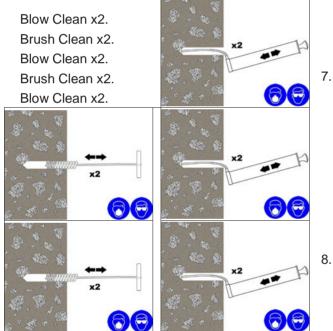
Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	\checkmark
Acetone	100%	×
Aqueous Solution Aluminium Chloride	Saturated	~
Aqueous Solution Aluminium Nitrate	10%	~
Ammonia Solution	5%	×
Jet Fuel	100%	×
Benzene	100%	×
Benzoic Acid	Saturated	~
Benzyl Alcohol	100%	×
Sodium Hypochlorite Solution	5 - 15%	~
Butyl Alcohol	100%	С
Calcium Sulphate Aqueous Solution	Saturated	~
Carbon Monoxide	Gas	~
Carbon Tetrachloride	100%	×
Chlorine Water	Saturated	×
Chloro Benzene	100%	×
Citric Acid Aqueous Solution	Saturated	~
Cyclohexanol	100%	~
Diesel Fuel	100%	С
Diethylene Glycol	100%	~
Ethanol	95%	×
Ethanol Aqueous Solution	20%	С
Heptane	100%	С

Chemical Environment	Concentration	Result
Hexane	100%	С
	10%	\checkmark
Hydrochloric Acid	15%	\checkmark
	25%	С
Hydrogen Sulphide Gas	100%	✓
Isoproyl Alcohol	100%	×
Linseed Oil	100%	✓
Lubricating Oil	100%	✓
Mineral Oil	100%	✓
Paraffin / Kerosene (Domestic)	100%	С
Phenol Aqueous Solution	1%	×
Phosphoric Acid	50%	✓
Potassium Hydroxide	10% / pH13	С
Sea Water	100%	С
Styrene	100%	×
Sulphur Dioxide Solution	10%	✓
Sulphur Dioxide (40°C)	5%	\checkmark
Culturin A sid	10%	✓
Sulphuric Acid	50%	\checkmark
Turpentine	100%	С
White Spirit	100%	\checkmark
Xylene	100%	×

✓ = Resistant to 75°C with at least 80% of physical properties retained. C = Contact only to a maximum of 25°C. * = Not Resistant

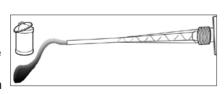
Installation Parameters


Size			M8	M10	M12	M16	M20	M24	
Nominal drill hole diameter	Ød	[mm]	10	12	14	18	22	26	
Diameter of cleaning brush $d_{_{b}}$	d	[mm]	14	14	20	20	29	29	
Torque moment T	T	[Nm]	10	20	40	80	150	200	
h _{ef,min} = 8d									
Depth of drill hole h ₀	h	[mm]	64	80	96	128	160	192	
Minimum edge distance c	C	[mm]	35	40	50	65	80	96	
Minimum spacing s	S	[mm]	35	40	50	65	80	96	
Minimum thickness of member h	h	[mm]		h _{ef} + 30 m	m ≥ 100 mm	1	h _{ef} +	h _{ef} + 2d ₀	
h _{ef.max} = 12d									
Depth of drill hole h	h	[mm]	96	120	144	192	240	288	
Minimum edge distance c	C	[mm]	50	60	70	95	120	145	
Minimum spacing s	S	[mm]	50	60	70	95	120	145	
Minimum thickness of member h	h	[mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2					· 2d	

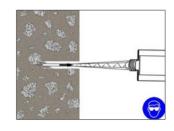

Product Data Sheet

Solid Substrate Installation Method

1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.


2. Thoroughly clean the hole in the following sequence using the DF Brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a Blow Pump may be used:

If the hole collects water, the current best practice is to remove standing water before cleaning the hole and injecting the resin. Ideally, the resin should be injected into a properly cleaned, dry hole. However, this product may also be used in a flooded hole.


- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even

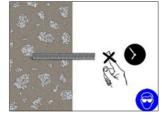
5

colour has been achieved without streaking in the resin.

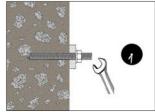
- If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.
- Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer

nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately $\frac{1}{2}$ to $\frac{3}{4}$ full and withdraw the nozzle completely.

Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly



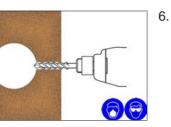
coated. Adjust to the correct position within the stated working time.


Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full.

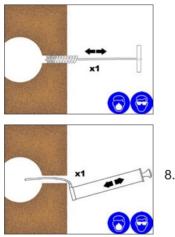
This excess resin should be removed from around the mouth of the hole before it sets.

- 9. Leave the anchor to cure.
 - Do not disturb the anchor until the appropriate loading time, has elapsed depending on the substrate conditions and ambient temperature.

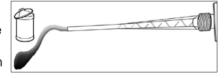
 Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.



Product Data Sheet

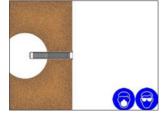

Hollow Substrate Installation Method

1. Drill the hole to the correct diameter and depth. This should be done with a rotary percussion drilling machine to reduce spalling.

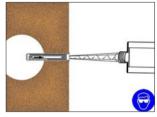


7.

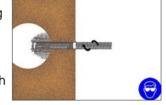
- 2. Thoroughly clean the hole in the following
- sequence using the DF Brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a Blow Pump may be used:



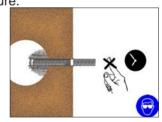
- Brush Clean x1. Blow Clean x1.
- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has

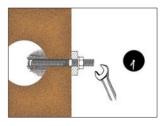

been achieved without streaking in the resin.

5. Select the appropriate perforated sleeve and insert into the hole.


- Insert the mixer nozzle to the bottom of the perforated sleeve, withdraw 2-3mm then begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the perforated sleeve and withdraw the nozzle completely.
- Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole

using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.

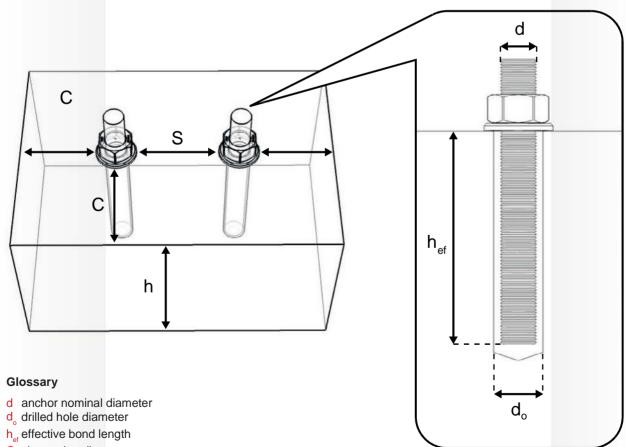



Any excess resin will be expelled from the hole

evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.

- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Product Data Sheet


Theoretical Number of Fixings Per Cartridge

Applies to solid substrates

Contriduo		M8	M10	M12	M16	M20	M24
Cartridge Volume	h _{ef}	Drilling Ø 10mm	Drilling Ø 12mm	Drilling Ø 14mm	Drilling Ø 18mm	Drilling Ø 22mm	Drilling Ø 26mm
	8d	124	77	51	27	16	10
Ē	10d	100	61	40	22	14	9
345 ml	STD	100	69	46	27	15	10
	12d	84	50	34	18	11	7
	8d	106	65	43	23	13	8
300 ml	10d	85	52	34	18	11	7
300	STD	85	58	38	23	12	8
	12d	71	43	29	15	9	5

Note: Jobsite/contractor installations usually result in more resin being injected than the theoretical requirement resulting in lower number of fixings per cartridge. The reduction to the number of fixings per cartridge in practice is greater for smaller diameter holes and shallower embedment depths.

Installation diagram

- C close edge distance
- S anchor spacing
- h concrete member thickness

Product Data Sheet

Steel Failure Information - Threaded Bars

Characteristic resistance values to tension load

Steel Failure - Characteristic resistance

Size					M12	M16	M20	M24
Steel grade 5.8	N _{Rk.s}	[kN]	18	29	42	79	123	177
Partial safety factor	γ _{Ms}	[-]	1.5				•	
Steel grade 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282
Partial safety factor	γ _{Ms}	[-]	1.5					
Steel grade 10.9	N Rk,s	[kN]	37	58	84	157	245	353
Partial safety factor	γ _{Ms}	[-]	1.4					
Stainless steel grade A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor	γ _{Ms}	[-]			1.	.9		
Stainless steel grade A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282
Partial safety factor	γ _{Ms}	[-]	1.6					
Stainless steel grade 1,4529	N _{Rk,s}	[kN]	26	41	59	110	172	247
Partial safety factor	γ _{Ms}	[-]			1.	.5		

Characteristic resistance values to shear load

Steel Failure - without lever arm								
Size		M8	M10	M12	M16	M20	M24	
Steel grade 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88
Partial safety factor	γ _{Ms}	[-]		•	1.	25	•	
Steel grade 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor	γ _{Ms}	[-]	1.25					
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177
Partial safety factor	γ _{Ms}	[-]			1	.5		
Stainless steel grade A4-70	V _{Rk,s}	[kN]	13	20	30	55	86	124
Partial safety factor	γ _{Ms}	[-]			1.	56		
Stainless steel grade A4-80	V _{Rk,s}	[kN]	15	23	34	63	98	141
Partial safety factor	γ _{Ms}	[-]	1.33					
Stainless steel grade 1,4529	V _{Rk,s}	[kN]	13	20	30	55	86	124
Partial safety factor	γ _{Ms}	[-]			1.	25		

Steel Failure - with lever arm								
Size			M8	M10	M12	M16	M20	M24
Steel grade 5.8	M⁰ _{Rk,s}	[N.m]	19	37	66	166	325	561
Partial safety factor	γ _{Ms}	[-]			1.	25		
Steel grade 8.8	M⁰ _{Rk,s}	[N.m]	30	60	105	266	519	898
Partial safety factor	γ _{Ms}	[-]			1.	25		
Steel grade 10.9	M⁰ _{Rk,s}	[N.m]	37	75	131	333	649	1123
Partial safety factor	γ _{Ms}	[-]			1.	50		
Stainless steel grade A4-70	M⁰ _{Rk,s}	[N.m]	26	52	92	233	454	786
Partial safety factor	γ _{Ms}	[-]			1.	56		
Stainless steel grade A4-80	M⁰ _{Rk,s}	[N.m]	30	60	105	266	519	898
Partial safety factor	γ _{Ms}	[-]			1.	50 233 454 786 56 266 519 898 33		
Stainless steel grade 1,4529	Mº _{Rk,s}	[N.m]	26	52	92	233	454	786
Partial safety factor	γ _{Ms}	[-]			1.	25		
Concrete pryout failure								
Factor k from TR 029 Design of bonded anchors pt 5.2.3.3			2					
Partial safety factor	γ _{Ms}	[-]			1	.5		

Product Data Sheet

Using P/P-C/P-E with Threaded Bars

Combined pullout and concrete cone failure in non-cracked concrete C20/25

Size				M8	M10	M12	M16	M20	M24		
Characteristic bond resistance in non-cracked concrete											
Characteristic bond resistance d	lry/wet concrete and flooded hole	$ au_{_{Rk}}$	[N/mm ²]	9.50	9.00	8.50	8.00	7.50	7.00		
Partial safety factor		γ _{Mc}	[-]	1,8							
	C30/37					1	,12				
Factor for concrete	Ψ	[-]			1	,19					
						1	,30				

Tension load calculations for combined concrete cone & pullout failure at various embedment depths

using threaded rods in dry / wet / flooded, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Dranorty	Sympol	Unit		Anchor Size						
Property	Symbol	Unit	M8	M10	M12	M16	M20	M24		
Effective Embedment Depth = 8d	h	mm	64	80	96	128	160	192		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	15.28	22.62	30.76	51.47	75.40	101.34		
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	240		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	19.10	28.27	38.45	64.34	94.25	126.67		
Partial Safety Factor	Υ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	19.10	25.45	35.25	51.47	80.11	110.84		
Partial Safety Factor	Υ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 12d	h	mm	96	120	144	192	240	288		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N⁰ _{Rk,p}	kN	22.92	33.93	46.14	77.21	113.10	152.00		
Partial Safety Factor	$\gamma_{_{MC}}$	-	1.80	1.80	1.80	1.80	1.80	1.80		

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

³ Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

4. Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

⁵ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

⁶ The compressive strength of the concrete ($f_{ck,cube}$) is assumed to be 25 N/mm² for C20/25 concrete.

⁷ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth

using threaded rods in dry / wet / flooded, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Broporty	Symbol	Unit			Ancho	or Size		
Property	Symbol	Unit	M8	M10	M12	M16	M20	M24
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24
Characteristic Bond Strength	$ au_{_{Rk}}$	N/mm ²	9.50	9.00	8.50	8.00	7.50	7.00
Effective Embedment Depth	h _{ef}	mm	64	80	96	128	160	192
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N⁰ _{Rk,p}	kN	15.28	22.62	30.76	51.47	75.40	101.34
Partial Safety Factor	Υ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S	mm	256	320	384	384	480	576
Characteristic Edge Distance (Splitting Failure)	C cr,sp	mm	128	160	192	192	240	288
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	180	219	255	330	400	464
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C cr,Np	mm	90	110	128	165	200	232

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel

failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029. ² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

³ Tabulated values are valid for temperture range -40° C to $+80^{\circ}$ C (Max LTT = $+50^{\circ}$ C; Max STT = $+80^{\circ}$ C).

⁴ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

⁵ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cvcling.

⁶ The compressive strength of the concrete ($f_{ck,cube}$) is assumed to be 25 N/mm² for C20/25 concrete.

7. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge:

Combined concrete cone and pullout failure

	\smallsetminus]		Ancho	or Size		
		M8	M10	M12	M16	M20	M24
Close Edge Distance, C (mm)	35 40 50 65 80 92 96 100 110 113 120 130 135 140 150 160 170 175 180 200 210 210 210 210 220 232	0.56 0.59 0.66 0.78 0.90 N/R	0.55 0.60 0.69 0.78 0.86 0.91 0.98 N/R	0.56 0.63 0.70 0.76 0.80 0.80 0.86 0.87 0.91 0.97 N/R	0.56 0.61 0.65 0.67 0.73 0.76 0.80 0.82 0.85 0.89 0.93 0.98 N/R	0.56 0.59 0.61 0.62 0.65 0.66 0.68 0.71 0.73 0.74 0.73 0.74 0.73 0.74 0.84 0.84 0.84 0.84 0.84 0.82 0.92 0.95 0.99 N/R	0.57 0.58 0.59 0.62 0.63 0.65 0.68 0.69 0.71 0.74 0.74 0.77 0.80 0.81 0.83 0.84 0.83 0.84 0.93 0.94 0.96 N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

Combined cor		une un	u punot	at runur	0	
			Ancho	or Size		
	M8	M10	M12	M16	M20	M24
35 40 50 65 80 96 100 125 150 175 185 200 225 270 275 300 351 400 426 450 464	0.67 0.68 0.70 0.73 0.77 0.80 0.81 0.87 0.92 0.98 N/R	0.65 0.67 0.70 0.73 0.76 0.77 0.82 0.86 0.91 0.93 0.95 N/R	0.65 0.67 0.69 0.72 0.73 0.77 0.81 0.85 0.87 0.89 0.93 N/R	0.63 0.65 0.67 0.68 0.71 0.74 0.78 0.79 0.81 0.84 0.90 0.90 0.94 N/R	0.63 0.64 0.65 0.68 0.70 0.73 0.74 0.76 0.78 0.83 0.83 0.83 0.83 0.87 0.92 0.97 N/R	0.65 0.65 0.68 0.70 0.73 0.75 0.77 0.82 0.85 0.82 0.85 0.89 0.94 0.96 0.99 N/K

- ^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- ² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.
- ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at std embedment depth

using threaded rods in dry / wet / flooded, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

				-				
Broporty	Symbol	Unit			Ancho	or Size		
Property	Symbol	Unit	M8	M10	M12	M16	M20	M24
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24
Characteristic Bond Strength	$ au_{_{Rk}}$	N/mm ²	9.50	9.00	8.50	8.00	7.50	7.00
Effective Embedment Depth	h _{ef}	mm	80	90	110	128	170	210
Characteristic Load (Combined Concrete Cone and Pullout Failure)	№ _{Rk,p}	kN	19.10	25.45	35.25	51.47	80.11	110.84
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	320	360	440	384	510	630
Characteristic Edge Distance (Splitting Failure)	C cr,sp	mm	160	180	220	192	255	315
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	180	219	255	330	400	464
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	90	110	128	165	200	232

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

³ Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

⁶ The compressive strength of the concrete (f_{ck cube}) is assumed to be 25 N/mm² for C20/25 concrete.

⁷ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

	\sim	1	Anchor Size										
		M8	M10	M12	M16	M20	M24						
Close Edge Distance, C (mm)	40 45 50 55 60 65 70 80 85 90 92 100 105 113 125 135 175 200 213 225 232	0.59 0.63 0.66 0.70 0.74 0.78 0.92 0.94 0.98 N/R	0.57 0.60 0.63 0.66 0.69 0.72 0.78 0.81 0.85 0.86 0.91 0.95 N/R	0.56 0.58 0.60 0.63 0.65 0.70 0.72 0.75 0.76 0.83 0.83 0.87 0.94 N/R	0.54 0.56 0.57 0.63 0.65 0.65 0.65 0.68 0.73 0.73 0.78 0.82 0.89 N/R	0.59 0.62 0.63 0.66 0.70 0.73 0.78 0.86 0.95 N/R	0.61 0.63 0.66 0.69 0.74 0.81 0.89 0.94 0.98 N/K						

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

	\smallsetminus			Ancho	or Size		
		M8	M10	M12	M16	M20	M24
40 45 50 60 65 70 80 85 90 105 125 150 175 185 200 225 250 270 300 351		0.69 0.70 0.72 0.73 0.74 0.75 0.75 0.79 0.80 0.82 0.83 0.83 0.93 0.98 N/R	0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.77 0.78 0.82 0.87 0.91 0.93 0.96 N/R	0.65 0.66 0.67 0.68 0.70 0.71 0.72 0.73 0.74 0.77 0.81 0.85 0.87 0.89 0.93 0.97 N/R	0.63 0.64 0.65 0.66 0.67 0.68 0.71 0.74 0.78 0.74 0.78 0.74 0.78 0.81 0.84 0.87 0.90 0.94 N/K	0.64 0.64 0.65 0.66 0.68 0.71 0.73 0.74 0.76 0.79 0.81 0.87 0.92	0.66 0.68 0.71 0.73 0.74 0.75 0.78 0.80 0.82 0.82 0.85 0.90
	400			CTION -		0.97	0.94
	426			. JN		N/R	0.97
	450						0.99
	464						N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ^{2.} Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.
- ^{3.} Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Product Data Sheet

Tension load calculations for combined concrete cone & pullout failure at 12d embedment depth

using threaded rods in dry / wet / flooded, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Broporty	Symbol	Unit	Anchor Size						
Property	Symbol	Unit	M8	M10	M12	M16	M20	M24	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	
Characteristic Bond Strength	$ au_{_{Rk}}$	N/mm ²	9.50	9.00	8.50	8.00	7.50	7.00	
Effective Embedment Depth	h _{ef}	mm	96	120	144	192	240	288	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	22.92	33.93	46.14	77.21	113.10	152.00	
Partial Safety Factor	γ _{Mc}	-	1.80	1.80	1.80	1.80	1.80	1.80	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	384	480	576	576	720	864	
Characteristic Edge Distance (Splitting Failure)	C cr,sp	mm	192	240	288	288	360	432	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	180	219	255	330	400	464	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	90	110	128	165	200	232	

¹ Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel

failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.
 ³ Tabulated values are valid for temperture range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

⁵ Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

⁶ The compressive strength of the concrete (f_{ck cube}) is assumed to be 25 N/mm² for C20/25 concrete.

7. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge: Combined concrete cone and pullout failure

Reduction factors for anchor spacing: Combined concrete cone and pullout failure

Combi							_	COMDI	leu con	CIELE C	une an	u pullot	at ranun	5		
	$\overline{\mathbf{\nabla}}$			Ancho	or Size					\searrow			Ancho	or Size		
		M8	M10	M12	M16	M20	M24				M8	M10	M12	M16	M20	M24
	50	0.66						50			0.72					
	60	0.74						60			0.74	0.71				
	70	0.82	0.72	0.65			IBLE	70			0.76	0.73				
(mm)	75	0.85	0.75	0.67			~~~	75			0.77	0.74	0.71			
	80	0.90	0.78	0.70				80			0.78	0.75	0.71			
U Ú	92	N/R	0.86	0.76				90			0.80	0.76	0.73			
l S	100		0.91	0.80	0.68			100			0.82	0.78	0.75	0.70		
Distance	113		N/R	0.87	0.73			120			0.87	0.82	0.78	0.73	0.69	
⊟ä	120			0.91	0.76	0.68		145			0.92	0.86	0.81	0.76	0.72	0.72
ge	125			0.94	0.78	0.70		175			0.98	0.91	0.86	0.79	0.75	0.75
Edge	135			N/R	0.82	0.73		185			N/R	0.93	0.88	0.81	0.76	0.75
	145				0.87	0.76	0.72	200				0.96	0.90	0.82	0.78	0.77
Close	150				0.89	0.78	0.74	225				1.00	0.93	0.85	0.80	0.79
	175				N/R	0.86	0.81	250					0.97	0.88	0.83	0.81
	200					0.95	0.89	270					1.00	0.91	0.85	0.83
	213					N/R	0.94	300						0.94	0.88	0.86
	225						0.98	351						N/R	0.93	0.90
	232						N/R	400							0.98	0.95
1. Tabula	Tabulated values are only applicable for instances where combined					mbined			426					N/R	0.97	
	concrete cone and pullout failure is the controlling failure mode as								450						0.99	

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

- ² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- ^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- ⁶ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

N/R

- ^{2.} Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.
- ³ Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.

464

- ⁵ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

Using P/P-C/P-E in Masonry

The below data is for threaded roads installed into various types of masonry using perforated sleeves and, in some cases, internally threaded sockets used in combination with perforated sleeves. The data represents an application in the worst case position in a masonry unit, as this can be difficult to assess if the wall is rendered.

Fixing	Туре	Sleeve	Drill ø	Min. Drill	Recommended	Recommended Shear	Installation Torque
Threaded Bar	Socket	Size mm	mm	Depth mm	Tensile Load kN	Load kN	Nm
M8	-	15 or 16 x 85	15 or 16	90	0.65	1.60	6
M10	-	15 or 16 x 85	15 or 16	90	0.65	1.60	6
M12	-	15 or 16 x 85	15 or 16	90	0.65	1.60	6
-	M8 x 80	20 x 85	20	90	0.80	1.85	6
-	M10 x 80	20 x 85	20	90	0.80	1.85	6
-	- M12 x 80		20	90	0.80	1.85	6

Hollow Bricks: Type RC 40

Hollow Bricks: Type B40

Fixing	Туре	Sleeve	Drill ø	Min. Drill	Recommended	Recommended Shear	Installation
Threaded Bar	Socket	Size mm	mm	Depth mm	Tensile Load kN	Load kN	Torque Nm
M8	-	15 or 16 x 130	15 or 16	135	0.80	1.80	6
M10	-	15 or 16 x 130	15 or 16	135	0.80	1.80	6
M12	-	15 or 16 x 130	15 or 16	135	0.80	1.80	6
-	M8 x 80	20 x 85	20	90	0.65	1.80	6
-	M10 x 80	20 x 85	20	90	0.65	1.80	8
-	M12 x 80	20 x 85	20	90	0.65	1.80	8

Solid Bricks and Blocks

Anchor Size	Recommended Load kN Tension or shear			
	Brickwork 20.5N/mm ²	Brickwork 7N/mm ²	Brickwork 3.5N/mm ²	Brickwork 2.8N/mm ²
M8	1.4	0.6	0.5	0.4
M10	2.9	1.3	0.9	0.7
M12	4.0	2.0	1.1	0.9
M16	5.0	3.0		
M20	Sizes above M16 are not recommended		Sizes above M12 are not recommended	

Do not install more than one fixing into a single masonry unit.

- In solid masonry, anchors should be spaced at a distance equal to or greater than 100mm centre to centre, and no less than 200mm from an edge.
- In hollow masonry, anchors should be spaced at a distance equal to or greater than 200mm centre to centre, and no less than 250mm from an edge.

Important Notes

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.

SOMA KIMYA SANAYI VE TICARET A.Ş. HADIMKÖY MAH. ARPARSLAN SOK. NO:10 ARNAVUTKÖY ISTANBUL/TURKEY T: +90 212 771 15 52 F: +90 212 771 39 34 E-mail: info@somafix.com Website: www.somafix.com